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Varational Autoencoder (VAE)
In the normal auto-encoder (AE) model, for a data distribution , we first encode  using  and decode it
using . We need to optimize the loglikelihood of  for a given encoding function . This gives the
following loss function:

where  is regularization term. However it is unclear how to devise such reguarlaization term in principle.

Based on AE, varational AE (VAE) derivied the loss function in a probablistic manner. We starts from :

The first term in the above equation is the log-likelihood of decoder output, while the second term minimize the KL
divergence between encoder output and the target encoder distribution. Now the  in the Eq (1) has a probabilistic
definition.

Denoise Diffusion Probablistic Model (DDPM)

Forward (diffusion) and Backward (denoise) process
In the DDPM, we start from , whose distribution is unknown. At each step , a diffusion process is used:
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where  draws from zero-mean unit-variance Gaussion distribution. Additionally, . We have the
following attributes regarding :

1. Forward Process: given , it is straightfoward to know that  follow a Gaussin distribution with
 as mean and  as the variance.

2. Fast Forward Process: A nice property of DDPM is that the conditional distribution of  given  can be
calculated explicitly without going through the recrusive process, i.e.,

Except for the first term in Eq. (6), each term is a zero-mean, unit-variance Gaussion noise, therefore, Eq (6) can be
also written as:

where ,  and  is again a zero-mean, uni-variance Gaussin.

3. Reverse Process: However, we don't know the conditional distribution of  given . We only know that for
small enough , it is a still a Gaussian distribution. We use neural network (with parameter ) to estimate the
mean and variance, given  and , i.e.,

4. Conditional Reverse Process: Though we don't know the explicit form of reverse probability, a nice property of
diffusion model is that  is a Gaussian distribution. This can be proved by the following deduction:

Since we know that  is a Gaussian distribution  for  from Forward Process,
we then have the following equations:

.
Note that the above equation can be written as:

with (note that ,  and )
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Therefore, we can see that  is again Gaussian with  as its mean and  as its variance. In

other word, we can re-parameterize  by

with  a sample from zero-mean, unit-variance Gaussian.
Using the Fast forward property, we know that

By combing the above 2 equations, we have:

Variational EM to optimize 

With the above properties, we can now derive the variational EM algorithm to maximize data distribution  with
respect to . Since only  is observed, and  are latent, they can be treated as the latent variable  in Eq.
(5). Using  and follow Eq. (3), we can have the following:

At the same time, we can use chain rule of probability to factorize  in the following form:
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Note that Eq (10) is possible because given ,  is indepdent of .

Similarly, we have:

we also note that for ,  because  is conditional independent of  given 
. We can further reforulate  by

Cominging Eq. (12 - 14), we have:

Therefore,

where  is the KL-diveragence between  and . Let's denote:

It is also noted that  is not a function of . Then the loss function of  becomes:
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Recall that:

;

. For simplicity of derivation, we can reparameterize

.

The KL distance between two Gaussian distributions has a closed form, i.e.,

Therefore, we have

Note the above expectation is taken over  which is drawn from the data distribution and  which is a zero-mean,
unit-variance Gaussian distribution. Emprically, it is found that training the following simplified loss function yield
better results:

Based on this, the following training and inference algorithm can be derived:

Interpretation of the Training and Sampling Process
In the previous section, we derive the training and sampling process in a mathematical rigorous way. On the other
hand, it may not be easy to understand the algorithms. Here we provide a few approches to interpret how the
training and sampling algorithm is derived in an intuitive manner.

Denoising perspective

The first method approaches to the problem from the denoising perspective. By the definition of reverse process,
 is to recover the mean of , thefore a reasonable loss function to optimize is thus:
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Since we don't know the distribution of  or  and their joint distribution, we cannot determine the above loss
function. Instead, we know that (from the forward process):

Accordingly, we re-parameterize  as

Then the loss function becomes

To sample , recall that (by the fast-forward process),

Plugging Eq. (27) into the loss function Eq. (22), (note that we cannot plug Eq. (26) into Eq. (22), because  is a
function of , so they cannot be sampled independently), we got

We further noting that:

is independent of  and

With the above changing of variable, the loss function can then be written as:

where  is a constant (only related to ). Also note that after the changing of variables,  in Eq (28) and (31)
are different functions (one is trying to denoise one step noise , and the other is trying to denoise cumulative noise
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